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Abstract

The optimal planning of off-grid microgrids in developing countries is particu-
larly challenging, as several political and socio-economic risks can hamper in-
vestments of private companies. Estimating the demand of newly electrified
communities is one of the most difficult tasks. Principally, the load growth,
which can be very steep, is of serious concern. In this paper, we address this
specific challenge and propose a novel stochastic dynamic method to size mi-
crogrids within a multi-year perspective, where the demand growth forecasting
is subject to uncertainty. In detail, a predefined scenario tree structure allows
capturing load growth uncertainty and obtaining different capacity expansion
strategies for each scenario. An illustrative case study for an isolated system
in Kenya using data collected in 23 Kenyan microgrids is shown. The optimal
design achieved with the proposed formulation has an initial capacity that is
half of the one obtained through the standard single-year methodology, thus
reducing the net present cost by 16-20%. This study is therefore of interest to
institutions, developers and researchers that seek fostering rural electrification.

Keywords: Generation Expansion, real option analysis, mini-grid, demand
growth, rural electrification, Particle Swarm Optimization (PSO)

Nomenclature

δT time resolution [h]

ηi efficiency of asset type i [-]

cF ; cMi fuel price [$/l] and specific maintenance cost of asset type i
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cLLC ; cHLC low and high priority load curtailment charge [$/kWh]

Cbasei ;Xbase
i ;βi parameters of the CAPEX cost function of component type i

C
F/M/LC
nc,t costs of fuel, maintenance and load curtailment in branch nc and

time t [k$]

CAPn;OPn capital and operational charges at node n [k$]

ch(n) all children nodes of node n

d; c;n ids of nodes of the tree representing the multi-year behavior of the mi-
crogrid

EdgB,nc,t degraded capacity of battery [kWh]

fsl; f int parameters of the fuel consumption map [$/kW]

FGd,nc,t fuel consumption in branch nc and time t of the generator installed in
node d [l/h]

i type of component {B: Battery, D: battery converter, G: Genset, I:
Inverter, T: Tank, P: PV}

Li lifetime of component type i

LLi,d,nc,t lifetime loss in current time step [h]

NRep
i,nc,y number of replacements of asset i, year y

nc branch from node n to children c

NPCRn NPC of subtree beyond node n [k$]

p(n) parent node of node n

Pi,d,nc,t power scheduling of resource i [kW]

P
dg+/dg−
i,nc,t maximum and minimum power rating of components [kW]

P dgi,nc,t degraded capacity of assets [kW]

pAvnc,t available renewable production (kW/kWp)

P
LL/HL
nc,t low and high priority load [kW]

P
LLC/HLC
nc,t low and high priority load curtailment in branch nc and time t [kW]

pa(n) all parent nodes of node n

RESn;REPnc,y residual value of assets and replacement costs at year y and
node n [k$]
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RLi,d,nc,t remaining lifetime in current time step [h]

t; y hour of the simulation, corresponding year

Xdg
i,d,nc,t degraded capacity in branch nc and time t of component type i installed

in node d

Xi,n capacity of component type i at node n

zGd,nc,t unit commitment of generator {1, 0}

zLL,i,d,nc,t operating status of asset i {1, 0}

1. Introduction

Microgrids are seen as a promising solution for fostering rural electrification
in remote areas in developing countries, as they often prevent the construction
of expensive grids extensions that would economically supply only some villages
[1]. However, electrifying rural communities that have never experienced elec-
tricity is very challenging, especially within a typical time horizon beyond 10
to 15 years [2]. In such long period, social habits and productive uses of elec-
tricity change, sometimes sharply, with growth rates above 14-15%/y [3], but
very uncertain at the same time, as some projects have experienced no growth
causing business failures [1]. Furthermore, microgrid investments often rely on
capital-intensive assets with low operating costs, such as batteries and solar pan-
els. However, the capital can be jeopardized if the demand remains low, social
and political distress arise, or thefts and vandalism reign. For this reason, op-
timization techniques that consider uncertainties and a multi-year perspective
are helpful approaches to reduce total costs and risks for developers.

Considering the uncertain long-term load growth when optimally designing
an off-grid microgrid is of critical importance, but challenging and consequently
usually disregarded. Although the microgrids usually last for several years,
this multi-year behavior is usually approximated with a single one-year hourly
scenario of load and renewable production [1, 4, 5]; thus causing loss of accuracy
due to an incomplete forecast that has a negative effect on the simulation of the
components behavior. Accordingly, the assets degradation both in decreasing
capacity and efficiency over time is usually neglected or extremely simplified
when modeling, e.g. the expenditures in replacements or retrofits, which affects
the infield profitability of the project.

Planning for future upgrades of the system, including uncertainties in the
system dynamics and the degradation of components, can allow deferring in-
vestment costs and reducing risks, which mitigate both the fiscal burden and
the risk profile of microgrid projects. All above reasons, lead to conclude that
it is useful and timely to investigate new methodologies on detailed multi-year
analysis on microgrids design, as well as to compare them with traditional yearly
simulations to recommend guidelines to researchers, institutions and developers.
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1.1. Literature analysis

Multi-year network and generation planning in power systems is a long-
established topic in developed countries [6–9]. These methodologies calculate
both the initial design of the system and the optimal expansion over time,
be it of the grid or the generation. As the combined optimization of grid and
capacity expansion is computationally demanding, authors usually approximate
the multi-year behavior of the system by a number of representative days [8, 10]
or using monthly [11, 12] or yearly [13] duration curves.

Recently, the same topic has been addressed from the microgrids perspec-
tive: either interconnected to the main grid [14–19] or isolated [10, 20–24]. Yet,
similar simplifications has been taken. The study in [21] applies mixed-integer
linear programming (MILP) to optimize only the initial storage capacity of an
isolated wind-diesel system, subject to load growth uncertainty using a tree-
based approach drawn by a scenario-reduction method. However only a single
representative day was used for each scenario. Authors in [20] proposed a sim-
ilar MILP model where only batteries and their optimal year of installation
are optimized. Yearly scenarios, represented by 12 days, were used to address
uncertainties in load demand, wind and renewable production, although the
load growth rate was considered constant. Contrarily to [21], authors in [20]
included a simplified model for the battery degradation; however, these results
are limited because only a few typical days represent each year. While the above
approaches focused on batteries only, reference [22] proposed the optimization
and repowering of the entire off-grid system, including wind turbines and diesel
generators, again using representative days. The authors in [25] considered a
similar system but including also equipment, yet with a simplified time horizon
and with no stochastic perspective. In [17], a multistage stochastic planning ap-
proach has been proposed still based on few representative days (1-3), to reduce
the computational burden. Instead, the authors in [19] proposed a method-
ology that decomposes the multi-year optimization to a number of single-year
optimizations with interesting results; however, the method does not take into
account uncertainties and it is still based on representative days. Furthermore,
in [23], the so-called Particle Swarm Optimization (PSO) [1], is used for solving
a multi-year capacity expansion problem with the limitation that each year is
optimized independently. An interesting approach has been proposed in [24]
to tackle multi-year sizing of an off-grid system based on a custom iterative
approach modeling capacity fading of the storage only and reliability concerns.
This approach is however deterministic and does not consider long-term uncer-
tainties in the load demand has not been considered and the approach is de-
terministic. Furthermore, another stochastic approach is proposed in [18] that
accounts for an interconnected microgrid with a solar plant, a wind turbine, a
micro-turbine, a battery storage and electric vehicles in which no degradation is
considered, one single day is simulated for each year and the upgraded capacity
is not tailored for different scenarios.

The usual way of approximating years with representative days allowed au-
thors to reduce the computational burden, at the cost of reducing the accuracy
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of the simulations, especially for battery degradation. This is particularly sig-
nificant for MILP approaches in which the computational burden significantly
grows with the problem size, making it difficult to represent both the entire
multi-year time-span and components’ degradation within a stochastic formula-
tion [26]. According to the study in [27] that compared different methodologies
for optimizing the size of a rural microgrid, the formulation using heuristic algo-
rithms obtained nearly the same solution of the MILP-based model, but with a
time reduction from 50% to 99% with respect to the latter. Therefore, we regard
heuristic methodologies as a viable option for stochastic multi-year optimization
that requires nevertheless further investigation.

As above described, the current state of the art only considers degradation
effects for the fading capacity of batteries using a simplified linear model pro-
portional to the installation year, and only for representative days [20]. The
exception is [24], which does not implement any stochastic approach, does not
apply standard heuristic methods, and only provides a limited comparison with
standard methodologies. Other complex formulations rely on rainflow algo-
rithms [28]. However, the corresponding problems would be more complex and
require long simulations, which increase computational requirements, particu-
larly on a multi-year analysis. As in typical off-grid microgrids, batteries are
discharged deeply every day, the maximum throughput model shows in con-
trast a good compromise between complexity and computational requirements
[24, 28]. This model is implemented in this paper. The aging effects on the
photovoltaic panels and converters are mainly related to the thermal stress on
components, and they can be represented as a linear degradation with time
[29, 30].

1.2. Contributions

To the authors’ best knowledge, no other paper has proposed a dynamic
stochastic planning methodology for off-grid microgrids, including a detailed
load growth representation, the dynamic system upgrade, the components degra-
dation, and the renewable uncertainty. The aim of this paper is to provide a
new methodology able to jointly reduce costs and risks for developing microgrid
projects. The main contributions are summarized below.

1. A scenario-based stochastic model based on PSO, combined with Monte
Carlo scenarios, to optimally size both the initial design and the repower-
ings of a typical off-grid system.

2. Detailed simulation of the actual system operation for the entire multi-
year horizon at hourly time resolution.

3. Assets capacity and efficiency degradation.

4. Simulation of assets’ replacements occurring when the components age
during the real-time operation.

5. Comparison between multi-year approaches (deterministic and stochastic)
and the traditional one-year methodologies.

The methodology is illustrated with a case study of a real off-grid system in
Kenya.
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The rest of the paper is organized as follows. Section II describes the model
whose mathematical formulation is detailed in Section III. Then, the case study
is described in Section IV and the results are discussed in Section V. Finally,
conclusions are drawn.

2. Problem statement

2.1. Description

The proposed approach has been developed for addressing the unique char-
acteristics of microgrids in developing countries in which the load estimation and
its growth are very difficult to forecast. We have considered the configuration
of a typical microgrid (Fig. 1), composed by a photovoltaic plant, battery stor-
age, fuel-fired generator and tank storage [1]. Although the proposed approach
can easily include other renewable energy sources, for the sake of simplicity, we
focus on solar as the preferred choice due to its wide availability in developing
countries and low maintenance.

Figure 1: Topology of the microgrid.

As typically done in the literature, the proposed formulation considers active
power flows, while the reactive power is assumed to be dispatched by the in-
verter or the fuel-generator using well-established droop-control techniques [31].
Typical rural loads require limited reactive power and power lines are not long,
hence leading to limited consequences in terms of energy flows.

2.2. Load and renewable production tree model

The simulation of the entire stochastic process can lead to unbearable com-
putational requirements. Accordingly, we aim at representing the multi-year
behavior of the system by means of scenarios modelled by a tree, similarly to
multi-stage optimization [5, 20]. However, conversely to traditional approaches
based on representative days, the entire lifetime of the project is simulated at
hourly time resolution, hence enabling a detailed representation of the com-
ponents, load and renewable production. The proposed tree can account for
uncertainties in the load growth and the available renewable production with a
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structure, as shown in Fig. 2, in which every branch represents a scenario char-
acterized by the occurrence probability and the load scenario. Since we focus
on off-grid systems of developing countries in which uncertainties related to the
load growth dominate those related to the photovoltaic production, the uncer-
tainties of renewable source are disregarded. However the proposed formulation
can easily incorporate additional nodes and branches to account for errors in
the renewable production.

Figure 2: Tree structure of the proposed model: load growth scenarios correspond to branches
and repowerings happen at nodes.

Provided a large-enough dataset of data, different scenario reduction tech-
niques can be used to identify the reduced tree with desired characteristics
[22, 32], such as the maximum number of leaf nodes and/or branch probabil-
ities, that reduce the computational burden. Considering the limited dataset
available for rural microgrids in developing countries and for the sake of clarity,
the number of load growth scenarios, as well as the branch probabilities, are
preset.

2.3. Objective function

The objective function of the proposed stochastic multi-year problem for a
microgrid is the minimization of the expected Net Present Cost (NPC) of the
system (1). The NPC considers the initial installation and future upgrades costs
CAPEXy, the operational and maintenance cost OPEXy, the replacement
charge when components age REP y, and the residual value of the assets RESy
at the end of the project. It is worth noticing that the term ”replacement”
refers to when a component previously installed ages and it is replaced with
a new component that is identical to the previous one; while ”upgrade” refers
to a new repowering of the system, with new components, whether or not the
previous aged yet. All costs but CAPEX are directly or indirectly affected by
the operating strategy as it affects the dispatching and life expectancy and aging
of components. The mathematical representation considering the proposed tree
structure is detailed in the subsequent section.

min E
ω∈Ω

[NPC] (1)

2.4. Microgrid upgrade

In the nodes of the scenario-tree, the algorithm is allowed to upgrade the de-
sign of the microgrid. It is worth noticing that the upgraded capacity and year
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of installation is independent for each scenario, as observed in Fig. 2, where up-
grade B may show different capacity and occur at a different time than upgrade
A. In contrast to some previous approaches [21, 22], this allows to dynamically
improve the system, considering the actual load growth and reducing risks. For
the sake of simplicity, the upgrades can be temporarily preset, e.g. for a specific
year. While the simulated investment costs reduce by implementing the number
of preset upgrading years, the computational burden increases, too.

2.5. Degradation model

The capacity and efficiency degradation are simulated considering the major
aging determinant of each component, which are time for PV panels, converters
and diesel tanks, the energy throughput for the battery, and the number of
operating hours for the generator [1, 28]. When the aging variable reaches the
lifetime value, the corresponding component ages and it cannot be used further
unless replacement occurs.

2.6. Replacements

When components age within the simulation phase and before the next sys-
tem upgrade, the proposed formulation could replace them with a new com-
ponent identical to the aged unit. Since the last repowering is usually more
up-to-date than the previous installation, only the last installed component is
replaced, when it ages. Instead, no replacement occurs for components that
have already been upgraded. Put simply, let us suppose that a generator was
initially installed and it ages in 7 years. If no other generator was installed be-
fore the 7th year, the genset is replaced; but if a new generator was installed due
to a repowering at the 5th year, the old generator is not upgraded. It is assumed
that an adequate procurement of spare parts is performed by the operator.

2.7. Operating strategy

The proposed approach is aimed at simulating the real-time operation of the
microgrid and has been designed to accommodate different operating strategies.
According to the proposed scenario-tree formulation, the system operation is
simulated in the branches.

In our case study, the system is dispatched with the most used operating
strategy for rural microgrids: the load-following operating strategy [1, 33], whose
aim is to minimize the operating costs with simple priority-list rules. The pro-
cedure first dispatches renewable energy sources, then the energy stored in the
battery, and finally the generator. For simplification purposes, multiple compo-
nents of the same type are dispatched proportionally to their actual capacity in-
cluding degradation; except for generators, which are dispatched independently.
More details can be found in [1]. Other approaches, e.g. predictive-based, re-
quire significant higher computational requirements that may not justify the
slightly higher benefits [1, 33].
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3. Mathematical formulation

3.1. Optimization algorithm

Being accepted and widely used for optimizing complex large problems [1,
9, 34] with very similar results with respect to equivalent MILP approaches
[27], Particle Swarm Optimization (PSO) method has been used to calculate
the optimal initial design and all capacity expansions of the microgrid. In each
PSO iteration, a combination of configurations of the components’ initial design
and the subsequent repowerings are specified, with the aim of improving the
results of the previous iterations. Then, each configuration is simulated for the
multi-year horizon as described below. The iterative algorithm stops when the
objective function is within a tolerance threshold, e.g. 0.1%, for 20 consecutive
iterations. Simulations were performed with hourly time steps.

3.2. Objective function

As shown in (2) and sketched in Fig. 2, the formulation of NPCRn recursively
calculates the expected NPC of the system for the sub-tree starting in node n.
The NPC accounts for the investment costs CAPEXn, the operational and
maintenance costs OPEXnc,y, the replacements costs REPnc,y, the residual
value of the assets RESn and, finally, the same function NPCRn evaluated for
the sub-tree starting from each children c. The recursive evaluation stops only
when the simulation reaches the leafs of the tree (ch (c) = ∅). Subscript nc
denotes the branch that has n and c as parent and child nodes, respectively.



min E
ω∈Ω

[NPC] ' min
A

[
NPCRn=1

]
NPCRn = CAPEXn +

∑
c∈ch(n)

pnc

Nl,nc∑
y=1

OPEXnc,y +REPnc,y
(1 + d)

y +

1

(1 + d)
y

{
NPCRc ch (c) 6= ∅
RESc ch (c) = ∅

] (2)

Furthermore, it is worth noticing that all the factors, but CAPEX, are
weighted by the occurrence probability pnc of the branch nc. The discount
rate d in the objective function penalizes cash flows far in time, while CAPEX
has no weight nor discount factor as it refers to the current node n.

The CAPEX formula shown in (3) is assumed invariant with time. Xi,n is
the capacity of the asset i installed in node n, for a given scenario and year;
Cbasei is the base cost of the same component with capacity Xbase

i , and βi shapes
the effect of economies of scale and transportation.

The OPEX detailed in (4) accounts for the fuel costs CFnc,t, the maintenance

fees CMnc,t, and the economic value of the energy-not-served CLCnc,t. That for-
mulation, whose cost factors are detailed in equations (6) and (7), refers to a
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generic branch of the tree spanning from node n to each child c and to every
simulation year y of the corresponding scenario. cF is the fuel price; cLLC and
cHLC are the low and high priority load curtailment fees, respectively. cMi is
the maintenance fee for each component i as a function of the operating status
zLi,d,nc,t, which equals zero when the component is not in operation or aged, and
one otherwise.

The total expense due to replacements in (8) is a function of the CAPEX
of the component i installed in node n and the number of yearly replacements
NRep
i,nc,y of the component. The residual value of the assets RESn is evaluated

with (9) at each leaf node n. It is a function of the remaining life RLi,d of
each component, the corresponding maximum lifetime Li of the same type of
asset i, a depreciation factor kSalvi lower than 1, and the investment cost of the
component.

CAPEXn =
∑
i∈A

Cbasei

(
Xi,n

Xbase
i

)βi

(3)

OPEXnc,y =
∑
t∈T (y)

[
CFnc,t + CMnc,t + CLCnc,t

]
(4)

CFnc,t = cF
∑

d∈pa(c)

FGd,nc,t (5)

CLC,nc,t = cLLCPLLCnc,t + cHLCPHLCnc,t (6)

CMnc,t =
∑

d∈pa(c)

∑
i∈A

cMi Xi,dz
L
i,d,nc,t (7)

REPnc,y =
∑
i∈A

∑
d∈pa(c)

NRep
i,nc,yC

base
i

(
Xi,d

Xbase
i

)βi

(8)

RESn = −
∑

d∈pa(c)

∑
i∈A

kSalvi

RLi,d
Li

Cbasei

(
Xi,d

Xbase
i

)βi

(9)

3.3. Power balance

The power balance at the AC and DC busbars is guaranteed by equations
(10) and (11), respectively. In particular, the scheduling PG,d,nc,t of each gener-
ator and the total inverter production PI,nc,t supply the high and low priority
load, PLLnc,t and high PHLnc,t, respectively. When power or energy restrictions oc-

cur, the operating strategy increases first low priority load curtailment PLLCnc,t ,

and secondly the high priority one PHLCnc,t . The power balance of the battery
PBDC,nc,t at the DC busbar, of the inverter PIDC,nc,t and the photovoltaic
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plants PP,d,nc,t installed at the current node is guaranteed by (11).∑
d∈pa(c)

PG,d,nc,t + PI,nc,t =

PLLnc,t + PHLnc,t − PLLCnc,t − PHLCnc,t

(10)

∑
d∈pa(c)

PP,d,nc,t + PBDC,nc,t + PIDC,nc,t = 0 (11)

3.4. Converters

The total production PI,nc,t of the inverters at AC busbar and of the battery
converter at the DC busbar PBDC,nc,t are constrained to be within its actual
capacities, as stated in (12) and (14), respectively. The power limits account for
the degradation of components as stated in Section 3.9. The batteries dispatch
is calculated according to the average actual efficiency ηB,nc,t of the battery
and the DC/DC converter using (15). The model also accounts for the inverter
losses in (13).

−P dg−I,nc,t ≤ PI,nc,t ≤ P
dg+
I,nc,t (12)

PIDC,nc,t =


PI,nc,t
ηI,nc,t

PI,nc,t ≥ 0

PI,nc,tηI,nc,t PI,nc,t < 0
(13)

−P dg−BDC,nc,t ≤ PBDC,nc,t ≤ P
dg+
BDC,nc,t (14)

PB,nc,t =


PBDC,nc,t
ηB,nc,t

PBDC,nc,t ≥ 0

PBDC,nc,tηB,nc,t PBDC,nc,t < 0
(15)

3.5. Battery

The energy available in the battery EB,nc,t is detailed in (16) as the sum of
the four elements: the energy available in the battery in the previous time step
EpreB,nc,t, be it in the current branch or the previous one, the power flow PB,nc,t of
the DC/DC converter deprived by conversion losses, and the additional energy
ErepB,nc,t introduced by newly installed batteries due to an upgrade or a replace-
ment. Moreover, the current energy capacities of the battery are guaranteed in
(17) according to the degradation model in Section 3.9.

EB,nc,t = EpreB,nc,t − PB,nc,t + ErepB,nc,t (16)

Edg−B,nc,t ≤ EB,nc,t ≤ E
dg+
B,nc,t (17)

3.6. Renewable production and load curtailment

The hourly renewable production PP,d,nc,t is limited by the maximum hourly
available production, which depends on the current capacity of the PV modules
P dgP,d,nc,t and the per unit production pAvnc,t referred to a 1-kWp non-degraded

module, as shown in (18). The degradation model of P dgP,d,nc,t is detailed in
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Section 3.9. The high and low priority load curtailment, PLLCnc,t and PHLCnc,t

respectively, are limited by the maximum corresponding load, as detailed in
(19) and (20).

0 ≤ PP,d,nc,t ≤ pAvnc,t
∑

d∈pa(c)

P dgP,d,nc,t (18)

0 ≤ PLLCnc,t ≤ PLLnc,t (19)

0 ≤ PHLCnc,t ≤ PHLnc,t (20)

3.7. Generator

The power flow of each installed generator is modeled with a specific hourly
variable PG,d,nc,t whose value is limited by the power output, its minimum
working point and the generator status zG,d,nc,t. All generators have the same
per-unit fuel consumption within the operation range. The fuel consumption is
the piece-wise linear function f with NFI intervals, as detailed in (22). g̃ is the
interval corresponding to dispatching PG,d,nc,t.

P dg−G,d,nc,tz
G
d,nc,t ≤ PG,d,nc,t ≤ P

dg+
G,d,nc,tz

G
d,nc,t (21)

FGd,nc,t = f intg̃,d,nc,tP
dg
G,nc,t + fslg̃,d,nc,tPG,nc,tz

G
d,nc,t (22)

3.8. Tank

The fuel VT,nc,t stored in the tank must be lower than the total capac-
ity considering degradation and aging, as modeled in (23). The formulation
characterizes the amount of fuel stored in the previous time step V preT,nc,t, the

consumption of the generators FGd,nc,t and the refilling variable FFillnc,t , which is
positive only when a refilling occurs and zero otherwise. When the tank is up-
graded, the available fuel increases by a fixed ratio corresponding to the initial
stored fuel.

0 ≤ VT,nc,t ≤
∑

d∈pa(c)

V dgT,d,t (23)

VT,nc,t = V preT,nc,t −
∑

d∈pa(c)

FGd,nc,t + F prenc,t (24)

3.9. Degradation of components

The degraded capacity Xdg
i,d,nc,t of each asset type i is modeled in (25) as a

function of the remaining lifetime RLi,d,nc,t of each component, whose formula-
tion is detailed in (26) as the difference between the remaining lifetime RLprei,d,nc,t

of the same component in the previous time step and the wear LLi,d,nc,t occurred
in the current time step. Variable RLprei,d,nc,t, described in (27), equals the ex-
pected lifetime Li of the component when it is either installed (t = 1 ∧ d = n)
or replaced (zRi,d,nc,t = 1). Only the last installed component is replaced and

this occurs when zRi,d,nc,t equals one. In the other cases, the constraint sets the
variable to the value of the previous time step: RLi,d,nc,t−1 if it belongs to the
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same branch or RLi,d,p(n)n,end otherwise. Finally, the lifetime loss LLi,d,nc,t of
each component depends on the main aging determinant in (28), as described
in Section 2.5.

Xdg
i,d,nc,t = Xi,d,t

RLi,d,nc,t
Li

(25)

RLi,d,nc,t = RLprei,d,nc,t − LLi,d,nc,t (26)

RLprei,d,nc,t =


Li t = 1 ∧ d = n

Li zR,i,d,nc,t = 1

RLi,d,p(n)n,end t = 1 ∧ d 6= n

RLi,d,nc,t−1 else

(27)

LLi,d,nc,t =


δT i 6= B ∧ not aged
PB,nc,t

EdgB,nc,t

i = B∧ not aged ∧
PB,nc,t ≥ 0

0 else

(28)

3.10. Efficiency degradation

The efficiency degradation of the battery and converter is detailed in (29) as
a function of the ratio between the remaining life of each component RLi,d,nc,t
and the corresponding initial lifetime. The formulation accounts for the degra-
dation status of components installed in different years. Multiple components
of the same type are dispatched proportionally to their capacity and the equiv-
alent efficiency ηi,nc,t is calculated in (30), where ηi is the nominal efficiency of
component type i, ηacti,d,nc,t is the actual efficiency for the component installed in
node d and φi is the efficiency degradation rate. The degradation of generators
is modeled in (31).

ηacti,d,nc,t = ηi [1− φi (Li −RLi,d,nc,t)] , i ∈ {B,D, I} (29)

ηi,nc,t =

∑
d∈pa(c)

Xdg
i,d,nc,tη

act
i,d,nc,t∑

d∈pa(c)

Xdg
i,d,nc,t

, i ∈ {B,D, I} (30)

f
sl/int
d,nc,t = fsl/int [1 + φG (LG −RLd,G,nc,t)] (31)

3.11. Fuel procurement

When the fuel available in the tank drops below a fixed threshold δT of the
actual maximum capacity of the tank, a new fuel procurement is requested.
The refill formulated in (32) occurs after a certain number of hours δtpdf as
delineated by a Monte Carlo process according to a specific probability density
function pdf . The volume refilled is the fixed fraction υT of the capacity of the
tank.

FFillnc,t+δtpdf
= υT

∑
d∈pa(c)

V dgT,d,t (32)
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4. Case study

The proposed method is tested for a microgrid in Wajir County in Kenya,
whose main activities are in the agricultural sector. Due to the equatorial loca-
tion, the proposed system is composed by photovoltaic plants, battery storage
systems, converters, backup generators and the fuel tank. We assume a time
horizon of 10 years, with a possible upgrade at the 5th year.

4.1. Load demand

The estimation of the load in a multi-year perspective faces two main chal-
lenges: estimating the shape of the daily load profile for every year and the
energy growth. In this study, we propose a simplified approach where the shape
changes homothetically along the years and the yearly energy growth rate is
constant. Therefore, the hourly load profile of the yth year is equal to a con-
stant applied to the load profile. Moreover, in order to stress the stochastic
analysis, a Gaussian hourly noise, with 20% standard deviation of the actual
load, is introduced.

The load demand at the first year was estimated using data of a real system
in the Wajir county, Kenya, for entire 2014 with 30-min intervals. Since the
system has been operating for 8 years, the profile was discounted using the
previous hypothesis to estimate the load profile of the microgrid in the first
year. The yearly growth is tailored using monthly energy data for 23 microgrids
in Kenya since their initial installation. By analyzing the 8 systems that been
operated at least 8 years, we identified three linear growth rate scenarios at
preset probabilities, according to Section 2: the so-called mid growth (27%),
high growth (52%) and low growth (9%) scenarios with probabilities 60%, 20%
and 20%, respectively. The full tree representation is depicted in Fig. 3: the lines
represent the energy growth demand and the dots the upgrades. It is supposed
that 20% of the actual load has high priority, being its curtailing more expensive
(1 $/kWh) than for the low priority demand (0.5 $/kWh).

Figure 3: Tree structure of the case study, calibrated with data from 23 Kenyan microgrids:
node 1 represents the initial design, nodes 3 to 5 correspond to the upgrades of the system
for the high, mid and low growth rate scenario.

4.2. Renewable energy production

The photovoltaic energy production was estimated by using irradiance yearly
profiles obtained with the Graham model [35, 36] and the combination of HDKR
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and Herbs models [37], which together enable estimating the energy production
by the irradiance and ambient temperature. The two-steps ARMA methodology
of the Graham model captures the random deviations of the solar irradiance over
a deterministic component related to the astronomical behavior specific for the
site.

Since no data were available for the Waijir County, we calibrated the random
characteristics of the Graham methodology with the data of the close weather
station in Kitale, Kenya. The deterministic component and the average monthly
irradiance of the Graham model, as well as the ambient temperature, were
calibrated using data of the Waijir County.

4.3. Other parameters

The cost of components, as well as their maintenance, were assumed invari-
ant with time. In particular, we assumed linear specific costs for batteries (350
$/kWh) and the photovoltaic plant (800 $/kWp). Moreover, the cost func-
tions used for the fuel-fired generators, the converters, and the fuel tank are
the same as in [1]. The maintenance costs for the photovoltaic plant, batteries,
converters, and tanks are 16 $/kWp/y, 3 $/kWh/y, 2 $/kW/y, and 0.15 $/l/y,
respectively. The minimum working point of the generator is 10% of its rated
power, corresponding to a specific fuel consumption of 0.9 l/kWh. At its rated
power, the value drops to 0.3 l/kWh. The maintenance cost of the generator is
5 c$/kWp/h and the fuel price is 0.9 $/l.

The lifetime of converters is assumed to be 15 years with high efficiency (96%
for the inverter and 99% for the DCDC converter) that degrades by 0.13%/y.
The efficiency of batteries (96% roundtrip) degrades by 5% at the end of its
lifetime of 3000 equivalent cycles, corresponding to a capacity loss of 20%. The
efficiency of the generator is assumed to decrease by 5% at the end of its lifetime
(15000 operating hours). No degradation is assumed for the fuel tank, whose
lifetime is 25 years.

The fuel procurement occurs when the fuel available in the tank reaches a
fixed threshold (20%); then, the arrival of the refill occurs after a period of time
drawn with a Weibull function, tailored so that at least 3 days are required to
have a refill, which occurs within 6 days at 90% of probability.

4.4. Comparison procedure

The proposed multi-year stochastic approach (MYSA) is compared to a
multi-year deterministic approach (MYDA), a MYDA with no upgrage (MYDA-
NU) and standard 1-year methodologies (D5, D6, D7 and D10), as in [1]. The
MYDA case study is developed using the same optimization approach as of
MYSA but the load profile only corresponds to the mean scenario of Fig. 3.
Moreover, we propose four 1-year case studies to evaluate whether the typical
approach of designing the microgrid for the last year of the project could be
improved. In particular, we performed a sensitivity analysis over the reference
year to use in 1-year models and we propose case studies D5, D6, D7 and D10,
whose load profile corresponds to the year 5th, 6th, 7th and 10th, respectively,
of the mean load growth.
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5. Results and discussion

The main results of the study are shown in Table 1 and Table 2, which
details the NPC and the installed capacity for each component of the microgrid
for every design methodology, respectively. Table 3 reports the NPC of the
design achieved with 1-year models DXs and simulated under the multi-year
behavior of MYSA. Finally, the fraction of energy-not-served of simulating the
case D10 under MYSA conditions is depicted and compared in Fig. 4.

Table 1: Optimal solution, non-served energy and computational requirements with the multi-
year stochastic approach (MYSA), the multi-year deterministic approach (MYDA) with mean
load growth, the MYDA without upgrade (MYDA-NU), and the 1-year models (D5-D10).

Case
NPC Load Curt. Comp. time

[k$] [%] [h]

MYSA 953 2.3 69.9

MYDA 917 1.5 14.4

MYDA-NU 981 4.3 8.4

D10 (1-year) 1141 0.9 <0.2

D7 (1-year) 1034 1.1 <0.2

D6 (1-year) 935 1.1 <0.2

D5 (1-year) 825 0.9 <0.2

The outcomes reported in Table 1 confirm that the multi-year approaches
achieve a cheaper solution than the typical 1-year methodology (D10), which
optimizes the system for the demand of the 10th year. By considering the
dynamics of the load growth, MYSA, MYDA and MYDA-NU enable a fine-
tuned design of the system so that the initial design is smaller and the system
is upgraded as demand grows and the components degrade. NPC of MYSA and
MYDA is 16% and 20% lower than D10, respectively, thanks to the upgrade
occurring 5 years after the first electrification; however, even when no upgrade
is considered, such as in the MYDA-NU case, the NPC is still lower by 14%
than that of D10, thus suggesting that multi-year approaches are worthy even
without setting any upgrade.

As reported in Table 2, the installed capacity in the initial design (node 1) of
multi-year approaches MYSA and MYDA is 40-50% lower than that of the D10
case, while the installed capacity at the 5th year of the mid scenario (node 3)
almost equals the optimal design of D10, except for the tank and the generator.
This means that some of the installed components are deferred in multi-year ap-
proaches, thus enabling savings in terms of NPC thanks to the discounting effect
that discounts costs by 32% in 5 years. When no upgrade is considered (case
MYDA-NU), NPC increases by 7% with respect to MYDA since no CAPEX are
deferred and effects of components’ degradation are stronger. Furthermore, the
NPC in MYDA-NU is also lower than in D10, thanks to a significantly cheaper
initial design, although the generators’ consumption and the energy-not-served
increase. All this suggests that 1-year models may capture the optimal long-term
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Table 2: Installed capacity calculated with the approaches under test (MYSA, MYDA,
MYDA-NU, and D5-D10); nodes numbering refers to Fig. 3.

Case
Node PV Batt. Inv. DC/DC Gener. Tank

[#] [kWp] [kWh] [kW] [kW] [kW] [l]

MYSA

1 300 722 103 133 46 5782

2 905 2414 296 428 158 12778

3 577 1573 176 261 116 7416

4 340 949 103 133 61 5782

MYDA
1 314 816 96 138 45 4262

3 577 1571 168 271 116 7396

MYDA-NU 1 429 1011 158 179 74 8760

D10 (1-year) 1 588 1626 170 279 74 3003

D7 (1-year) 1 534 1470 253 154 62 2535

D6 (1-year) 1 473 1286 140 230 59 2834

D5 (1-year) 1 427 1184 121 200 51 1955

Table 3: Simulation of the 1-year design under multi-year behavior.

D5 D6 D7 D10

Reference demand year [y] 5 6 7 10

NPC DX [k$] 825 935 1034 1141

NPC DX-MYSA [k$] 1119 1100 1119 1142

ENS DX-MYSA [%] 15.9 11.4 9.1 6.6

design of the system, but, by neglecting the load dynamics, they incur in higher
costs and sub-optimal financial plans, contrarily to multi-year approaches.

The savings in CAPEX achieved by multi-year approaches are slightly coun-
teracted by higher load curtailment and fuel costs with respect to 1-year models,
as highlighted in Table 1. However, according to Fig. 4, load curtailment costs
occur only years after the last installation, which means that it is economically
cheaper not to tailor each upgrade to supply the demand of the last year, given
the proposed cost parameters, the proposed discount rate and scenario tree. The
load curtailment peaks at about 24% only in the 5th year of the high growth
scenario because the initial design is sized considering a weighted average of all
scenarios, whereas the high-scenario has only 20% of probability to occur. In the
mid scenario of MYSA and MYDA, it is never higher than 7% and lower than
2% in the last year, thanks to the upgrade. In MYDA-NU, where no upgrade is
considered, load curtailment increases up to about 12% in the last year of the
project, although the first installation was higher than in MYDA. This suggests
that upgrading the microgrid as demand grows not only decreases NPC but also
increases the service quality by reducing ENS, and the proposed approach can
help the developer tailor the upgrading plan for its specific project according to
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its requirements.

Figure 4: Fraction of the energy-not-served of multi-year case studies.

Despite providing interesting results, multi-year approaches have high com-
putational requirements (8-70h), thus they can be more suitable for the ad-
vanced design of the microgrid rather than preliminary studies, which might be
better served by 1-year models. High computational costs (70 h) of MYSA are
justified by a fine evaluation of the NPC under uncertainties in the load growth
conversely to MYDA and 1-year models. MYDA approximates well the optimal
design of the mid scenario of MYSA with lower computational requirements
(14 h), but neglect uncertainties. As a consequence, NPC of MYDA is slightly
lower than MYSA by 4%. MYDA-NU requires only 8 h, but has higher NPC
and ENS, since it has no upgrade and neglects uncertainties.

Although the proposed case study has strong symmetries related to the
growth rates (52%, 39% and 9%), scenarios’ probabilities (20%, 60% and 20%)
and the invariant shape hypothesis, the installed capacities at the 5th year are
not completely linear with the growth rate, also due to the economies of scale.
For instance, the inverter, the DC/DC converter and the tank are not upgraded
in the low growth scenario, due to economies of scale, the discount rate, and
reduced energy-not-served. Although out of the scope of this paper, MYSA can
easily handle stronger asymmetries in growth scenarios, which can affect the
results and especially the initial design which is common for all scenarios.

It is worth noticing that since the yearly load profiles of 1-year models (DXs)
differ from the one of multi-year cases, be them stochastic (MYSA) or deter-
ministic (MYDA), the optimal NPC of cases DXs cannot be a measure of the
NPC subject to the multi-year behavior of the demand. Aiming at evaluating
such difference, we reported in Table 3 the NPC (NPC DX-MYSA) and the
ENS of the microgrid designed with the 1-year methodology (cases D5-D10)
and simulated with the same multi-year approach of MYSA depicted in Fig. 3.
The sensitivity analysis over the reference mid-term demand highlights that the
gap between NPC DX and NPC DX-MYSA increases from D10 to D5 due to a
sharp increase in fuel consumption and load curtailment, whose ratio reaches up
to 15% in D5-MYSA. This suggests that underestimating the load demand has
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high consequences in terms of NPC and ENS. Furthermore, it is worth noticing
that even the lowest ENS (6.6%) with D10-MYSA is much higher than the cor-
responding one in Table 1, as D10 simulations neglect the stochastic behavior
of the demand growth and its dynamics. Considering also that no NPC with
DX-MYSA is comparable to NPC with MYSA, MYDA or MYDA-NU, results
suggest that it is difficult for 1-year models to be as cheap as multi-year ones,
thus the latter can fine-tune the business plan.

6. Conclusions

The present study addressed the optimal planning and dynamic capacity
expansion of rural microgrids in developing countries, considering the degrada-
tion of components and uncertainties in the forecast of the load profile and its
growth rate. Particle Swarm Optimization has been successfully used in multi-
year planning, comprising for hourly simulations of the multi-year lifetime of
the system. Uncertainties of the load growth have been considered by means of
a scenario-tree formulation. The operational consequences of the assets’ degra-
dation are also simulated.

The case study based on data collected from Kenyan microgrids confirmed
that the NPC of the proposed multi-year approach was 16-20% lower than in
standard 1-year methodologies, where only the last year of the project is sim-
ulated and operational effects of components’ degradation are neglected. Con-
trary to standard approaches, the capacity expansion proposed here enables
deferring the components’ installation as demand grows, thus strongly reducing
CAPEX and NPC. Fuel consumption and energy-not-served slightly increase
over time to compensate for the demand growth and the components’ degra-
dation, but their negative effects on NPC are limited, also due to the discount
effect.

A sensitivity analysis over the load forecast of 1-year methodologies sug-
gested that no single 1-year load forecast can approximate the solution achieved
by a multi-year method. The same results highlighted that underestimating
the demand in 1-year models leads to high costs and large share of energy-not-
served, when no upgrade takes place.

Results show that 1-year methodologies successfully calculate the optimal
long-term design of the system with very low computational requirements; how-
ever, the solution of multi-year approaches is more fine-tuned, since they eval-
uate the multi-year behavior of the system, including load growth and compo-
nents’ degradation. Therefore, 1-year methods could be suitable for a prelimi-
nary design, while multi-year approaches are more advisable in later planning
stages.

This study can lay the foundation for further stochastic multi-year ap-
proaches based on heuristic methodologies even considering multiple energy
sources, non-linear behavior of components or reliability concerns, which are
timely topics with space for improvement.
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